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ABSTRACT 

In this paper, we determined a  numerical solution of the incompressible Navier-

stokes equation in the vorticity-stream function formulation. The solution is based 
on a technique of elliptic grid generation in which we transform the physical domain 
into rectangular computational domain, which requires the use of a curvilinear 
coordinate system to transform the governing equations to be applied on the 
computational domain. The transformed equations a re  approximated using central 
differences and solved simultaneously by the Alternating Direction Implicit method 
and successive-over relaxation iteration method.  
 
Keywords: Alternating direction implicit method, successive over relaxation iteration 

method, Navier-Stokes equation.   
 
 

1. INTRODUCTION 

In many engineering applications, lubrication, channel flows, pipe 
flows, the contraction appears frequently, which makes it necessary to study 

thoroughly the distribution of the streamlines and their values along the 

geometry of the flow with different contraction ratio Costas et al. (1998). 
Ismaiel et al. (2003) determined a numerical solution for the incomprssible 

Navier Stokes equations for the flow inside contraction geometry using 

elliptic grid generation technique. Salem (2004) and Salem (2006) studied 

the incomprssible Navier Stokes equations for the flow inside contraction 
geometry using different numerical techniques. In this paper we will impose 

some assumption on the mathematical model, which appears in the physical 

case on the irregular-shapes (Peyret and Taylor (1983)). We produce the 
numerical solution, of the two-dimensional Navier-Stokes equations in a 

non-orthogonal curvilinear coordinate system. That can treat the method of 

automatic numerical generation of a general curvilinear coordinate system 
coordinate lines coincident with all boundaries of a simply connected region 

(Liseikin (1999) and Kmupp and Stanly (1994)).  
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The curvilinear coordinates being generated as the solutions of two 
elliptic partial differential equations (Thompson (1985)). Regardless of the 

shape and number of bodies and regardless of the spacing of the curvilinear 

coordinate lines, all numerical computation, both to generate the coordinate 

system and to subsequently solve the Navier-Stokes equations on the 
coordinate system, is done on the rectangular grid with square mesh, which 

is the computational plane. We apply the numerical grid generation 

technique to find a numerical solution of the two dimensional, 
incompressible viscous flow equations written in the vorticity-stream 

function formulation on contraction geometry. The computational plane is a 

rectangular shape, which is divided into an equally spaced grid system. The 
transformed equations of the governing equations are approximated by finite 

difference formulation, which is solved in the rectangular grid system. 

 

 

2. TRANSFORMATIONS OF PARTIAL DIFFERENTIAL 

EQUATINS 

In order to overcome the problem of the physical domain, we use 

the method of grid generation i n  which we transform the physical domain 

into rectangular computational domain (Hoffman (1989) and Middelecoff  

and Thomas(1980)). Now, it is required to perform all numerical 

computations in the uniform rectangular transformed plane, in order to 

do that, the dependent and independent variables interchanged. Define 

the following relations between the physical and computational spaces 

in Figure 1. 

 
Figure 1: The physical geometry with boundary conditions 
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Figure 1 (continued): The physical geometry with boundary conditions 

 

Two-dimensional elliptic boundary value problems are considered. 

The general transformation from the physical plane ( , )x y  to the 

transformed plane ( , )ξ η  is 

 
( , ),x yξ ξ=  

 

( , )x yη η=                                            (2.1) 

and 
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,y

x

J

ξη =                                                (2.2) 

where 
 

,
.

,

x y
J J x y x yξ η η ξ

ξ η

 
= = − 

 
                                 (2.3) 

 

 

Now, for any function ,f  the first derivative in the computational domain is 

given by 

 

1
,

f
y f y f

x J
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                                  (2.4) 

 

and the Laplaceian is defined as: 
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η ητ
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                                      (2.6) 

 

and 

2 ,A x x xξη ηηα ξξ β γ= − +                                  (2.7) 

 

2 .B y y yξη ηηα ξξ β γ= − +                                 (2.8) 

 



Numerical Simulation for the Viscous Flow inside Complex Shapes using Grid Generation 

 

 Malaysian Journal of Mathematical Sciences 79 

 

The transformation of the time derivative from physical domain to 
computational domain takes the form: 

 

( )
( )

( )
( ),

, , , ,
,

, , , ,x y

x y f x y tf

t tt ξ η ξ η

∂ ∂∂ 
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∂ ∂∂ 
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( ) ( ) ( ) .t t tx y x y f x f x f y y f y f xξ η η ξ η ξ ξ η ξ η η ξ= − + − + −   (2.10) 

 

 Finally, the time derivative in the computational domain takes the form: 

 

, ,

1 1
.t t

x y

f f
y f y f x x f x f y

t t J J
ξ η η ξ η ξ ξ η

ξ η
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The system of elliptic equations: 
 

2 0,x x xξξ ξη ηηα β γ− + =  

 

2 0.y y yξξ ξη ηηα β γ− + =                                 (2.11) 

 

Its solved in the computational domain ( ),ξ η  in order to provide 

the grid point locations in the physical space ( ),x y  in the general case can 

be conveniently solved by the finite-difference method with the successive 
over relaxation (SOR) method Smith (1985) of the dependent variables and 

under relaxation of the coefficients with linearly interpolated initial guess 

Barfield (1970); Yanenko (1971)). The values of the coefficients , ,α β γ  and 

J  are stored for use in the solution of the partial differential equations. 
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 The grid system on the physical and computational planes is shown 
in Figure 2 for the six contractions respectively. 

 

 

 
 

 

 
 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

Figure 2: Grid system on the physical plane for contraction geometry  

 
 

3. FORMULATION OF THE PROBLEM 

The differential equations governing the motion of an 

incompressible viscous fluid inside a back step, T-shape, high dam-shape, L-

shape, nozzle, U-shape are the two-dimensional stream-vorticity formulation 

(Cheng and Tser (1991)). These equations are 
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21
,

Re
t x yuω ω υω ω+ + = ∇                                  (3.1) 

 
2 .ψ ω∇ = −                                              (3.2) 

  

Where ,u υ  are the velocity components of the flow, Re is the Reynolds 

number, ψ  is the steam function, ω is the vorticity and 

( )
( ) ( )2 2

2

2 2
.

x y

∂ ∂
∇ = +

∂ ∂
 The velocity components are calculated from the 

equations 

 

, .y xu ψ υ ψ= = −                                        (3.3) 

 

 

4. NUMERICAL SOLUTION USING GRID GENERATION 

TECHNIQUE 

 To obtain the numerical solution using grid generation technique, 

we transform the governing Equations (3.1) and (3.2) from the physical 

domain into the computational domain. The non-conservative form is chosen 
here, 

 

[ ] ( ),
.t t x t y tx y

ζ η
ω ω ω ω= − +                                (4.1) 

 

For steady case  0,t tx y= =  therefore 

[ ]
,
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ω ω=                                                    (4.2) 
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J
ξ η η ξω ω ω= −                                    (4.4) 
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J
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( )1
,y x x

J
ξ η η ξψ ψ ψ= −                                    (4.6) 

 

( )2

2

1
2 ,

J
ξξ ξη ηη η ξω αω βω γω σω τω∇ = − + + +                   (4.7) 

 

( )2

2

1
2 ,

J
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( )1
,x y y

J
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( )1
.yu x u x u

J
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According to the relations (2.4) to (2.11) the giving equations (3.1) and (3.2) 
are transformed to the computational plane as 
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u
y y x x

J J
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( )2

1
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J Re
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( )2

1
2 ,

J
ξξ ξη ηη η ξαψ βψ γψ σψ τψ ω− + + + = −               (4.12) 

 

where , ,α β γ  are functions of ξ  and ,η which are defined in Equation 

(2.6), σ and τ  are given by 
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2 2 ,y x x x x y y y

J
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The transformed equations of the velocity components are 
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( )1
.y y

J
η ξ ξ ηυ ψ ψ

−
= −                                    (4.16) 

 

 

5. NUMERICAL SOLUTION USING FINITE DIFFERENCE 

METHOD 

 The giving equations are applied at every interior grid point on 

the discrete grid system (including the re-entrant boundaries and all 

derivatives Thames et al. (1977) and Smith and Leschziner (1995)). To 

obtain the FDE of Equation (4.11), we use the alternating direction 

implicit (ADI) method which have two steps given by: 

 

Step 1: We rearrange Equation (4.11) as  
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Then the finite difference approximation of this equation given by 
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Step 2: We rearrange equation (4.11) as 
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Then the finite difference approximation of this equation given by 
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Now, we know from Equations (5.2) and (5.4) the solution of 
1

,

n

i j
ω +

at time 

step ( )1n + by using the boundary conditions of ψ and ω . Also the finite 

difference form of equation (4.12) defined by  
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Where the coefficient , , , ,, , ,
i j i j i j i j

α β γ σ  and ,i j
τ  are known from the 

grid generation system such that when performed 
,

( 1)

i j

nω +
 at time step 

( )1 ,n + then we shall solve this system (5.6) using SOR. 

 

 

6. RESULTS AND DISCUSSION 

The results or the numerical treatment of the stream function, 

vorticity and velocity in the contraction geometries as see on Figure 2 and 
for Reynolds number 50 and 1000 are presented in Figures 3-8. 

 

For the geometry in Figure 2(a) the computed stream function 
results in different constant-stream lines in Figures 3(a) and 4(a), 

respectively for two chosen Reynolds numbers. The stream lines are shown 

at the time in the contraction flow. Many of the features described above are 

clearly seen including the separation zone in the left lower and right lower 
kinks.  

 

The stream functions have common features, forming vortex at these 
places. It is noteworthy that the vortex formed at the contraction is stronger 

for greater Reynolds number. Also this is in fact physically acceptable 

because assuming the decrease of visicosity with increasing Reynolds 
number, the velocity of the fluid increase and consequently the vortex 

stronger at the contraction. This could be clearly seen from the vorticity 

patterns in Figures 5(a) and 6(a). We are also show the changes of the 

velocities with the change of Reynolds number. In Figures 7(a) and 8(a), we 

show that velocity diagram with changing x at approximately 0.25.y =  
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Figure 3: Stream function contours at Re=50 
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Figure 4: Stream function contours at Re=1000 
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Figure 5: Vorticity contours at Re=50 
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Figure 6: Vorticity contours at Re=1000 
 
 

 

 
 
 

 
Figure 6: Vorticity contours at Re=1000 
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Figure 7: Velocity profiles at Re=50 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 7: Velocity profiles at Re=50 
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Figure 8: Velocity profiles at Re=1000 
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Figure 9: Stream function contours (compared results) at Re=1000 
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Figure 10: Velocity profiles (compared results) at Re=1000 

 

For the second geometry (T-shape of Figure 2(b)), the results of the 

computed stream function, Figures 3(b) and 4(b), give different constant-
stream lines for two chosen Reynolds numbers. We note that at the left and 

right lower edges the separation zone increase with increasing Reynolds 

number. This is also shown by vorticity patterns in Figures 5(b) and 6(b). 
Another different result for this second geometry is the velocity change at 

the left and right lower sharpe edges shown in Figures 7(b) and 8(b) with 

changing x at approximately 0.8,y =  we note that at this point the velocity 

attains maximum. 

 

For the third geometry (high dam-shape of Figure 2(c)), the results 

of the computed stream functions, Figures 3(c) and 4(c), give the different 
constant-stream lines for two chosen Reynolds numbers. Here we note that 

the separation zone in the upstream kink which is the head of the horseshoe 

vortex, the head of the arch vortex, the reattachment line after that. It is 
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noteworthy that the vortex formed at the contraction becomes weaker, the 
increasing Reynolds becomes. 

 

In the fourth geometry (L-shape of Figure 2(d)), the results of the 

computed stream functions, Figures 3(d) and 4(d), give different constant-
stream lines for two chosen Reynolds numbers. We note that there are two 

singularity points at upper and lower edge. At these points vorticity at upper 

edge is stronger that the lower. We also note that the vorticity at upper and 
lower edges becomes weaker with increasing Reynolds number. This could 

be seen clearly from the vorticity patterns in Figure 5(d) and 6(d). The 

velocity profiles for this shape at 0.5y = are shown in Figures 7(d) and 8(d). 

 

In the last two geometries (├ -shape  and ⨆-shape of Figure 2(e) and 

2(f)) the results of the computed stream functions Figures 3(e), 3(f) and 4(e), 

4(f), give the different constant-stream lines for two chosen Reynolds 
numbers. We note that the vorticity at singular points are stronger with 

decreasing Reynolds number. The vorticity contours are shown in Figures 

5(e), 5(f) and 6(e), 5(f), whereas the velocity profiles for the last two shapes 

at 0.5y =  are shown in Figures 7(e), 7(f) and 8(e), 8(f). 

 

Finally the computed results are compared with the available results 
of other investigators, in order to validate the accuracy of the numerical 

procedure. The stream function contours and velocity profiles are presented 

together with the results in Figures 10 obtained their results using the 

vorticity-stream function formulation and using the primitive variable 
formulation, both studies obtained used grid system for contraction 

geometry with control function 41x41 grid, all computed results are 

compared at Reynolds number 1000.  
 

 

7. CONCLUSION 

 Within some approximations Reynolds number is inversely 

proportional to the viscosity of the fluid. Thus, at Re=50 in Figure 4 at high 

viscosity, some small vortices start to form at singular points for these 
shapes investigated (Figures 2(a)-2(b)). However, when the Reynolds 

number increases to Re=1000 (Figures 5(a)-5(b) and 6(a)-6(b)), the vorticity 

at the contraction becomes weaker when the Reynolds number increases 
(Figures 5(c)-(f) and 6(c)-6(f)). 
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